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Abstract

We have analyzed cross-relaxation in fractionally deuterated molecules and showed that the full matrix analysis
fails except when the dilution is extreme. This is because the isotopic dilution alters the matrix exponential rela-
tionship between the observed spectrum and the cross-relaxation rate constants sought. Consequently, an average
of the spectra of various isotopomers differs from the matrix exponential of an average relaxation matrix. We
have derived a series expansion that allows the determination of the cross-relaxation rate constants in arbitrarily
deuterated molecules.

The technique of isotope dilution of the proton spin
reservoir is a useful tool for improving the spectra
of macromolecules (LeMaster, 1989; Venters et al.,
1995; Grzesiek et al., 1995; Nietlispach et al., 1996).
The improvement stems from the decrease of the
longitudinal and transverse relaxation rates. This im-
plies that the autorelaxation rates of equivalent protons
change with the degree of isotope exchange. Hence,
in a partially deuterated molecule, considerable vari-
ability in autorelaxation rates may exist from site to
site. Thus, the cross-peak volumes alone are not a
good gauge of cross-relaxation rates. Another impor-
tant consequence of isotope dilution is that the cross
and diagonal peaks are reduced to a different extent
by random fractional isotope exchange. Although all
the protons from a given site contribute to the diag-
onal peak, the contribution to the cross-peak comes
only from pairs of protons that participate in cross-
relaxation (Wagner, 1980). This is analogous to the
signal intensity in a13C–13C INADEQUATE exper-
iment (Bax et al., 1981) where only 0.012% (1.1%
of the 1.1% present13C) of the nuclei contribute to
the signal, because 0.012% is the concentration of
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13C–13C spin pairs. In homonuclear cross-relaxation,
in addition to the two-spin interactions, one needs
to account for multispin effects. Here, we present a
quantitative analysis of a random or selective partially
deuterated cross-relaxation system.

The two-dimensional (2D) exchange spectrum, ex-
perimentally obtained at a mixing timeτm is repre-
sented by a matrix of peak volumesA(τm), which
is related to the dynamic matrixL by (Juraníc et al.,
1997)

A(τm) = eLτmNa0. (1)

In the absence of chemical exchange, Equation 1
becomes

A(τm) = e−RτmNa0, (2)

whereR is the relaxation matrix,a0 the volume of a
single spin, andN the diagonal matrix of spin popu-
lations,N = diag(ni, . . . , nM); nj is the number of
spins at spin sitei.

The normalized relaxation matrixR0, R0 = N−1R,
can be obtained by full matrix analysis (FMA), solving
Equation 2:

R0 = − 1

τm
N−1 ln

(
A(τm)(Na0)

−1
)
. (3)
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The Taylor series expansion of Equation 2 is
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0
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The diagonal elementsR0
ii of the dynamic matrix

depend on all the rates by which the particular site
loses magnetization,

R0
ii = Rexii + (ni − 1)Rauto

ii +
∑
j 6=i

cijR0
ij , (5)

whereR0
ij represents the magnetization exchange with

other sites,Rauto
it the losses due to autorelaxation, and

Rexii the losses due to external sources of relaxation.
The coefficientscii reflect that the cross-relaxation is
associated with overall relaxation (| cij |> 1) and that
the cross-relaxation rates in a spin-diffusion regime
are negative:

cij =


> 1,Rij > 0 (rotating frame or

small molecules)

≤ −1,Rij < 0 (large molecules).

(6)

To simplify the formulas, assume that the system is
in the spin diffusion limit (cij = −1). Eliminating
the dependence among the variables in Equation 4 by
using Equation 5, one can obtain its canonical form:

Aij (τm)
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(7)

Also, for the sake of clarity, in Equation 7 we put
R0
ii = −Rexii − (ni − 1)Rauto

ii . Note that in all the

above equations it is assumed that the spin sites are
fully protonated.

In an isotope-diluted system, sitei contains pro-
tons with probabilitypi . Then, for a fully protonated
site,pi = 1, and for a fully deuterated site,pi = 0.
For a multistep magnetization transfer between spin
sitesi andj mediated by sitesk, l, ...,m, all the in-
volved sites must contain protons. Letpikl...mj be the
probability that each of the sitesi, k, l, ...,m, andj
contains a proton. The probability, of the compound
eventikl. . . mj is (Kolmogorov, 1982)

pikl...mj = pipk|ipl|ik . . . pj |ikl...m, (8)

where pj |ikl...m denotes the conditional probability
that sitej contains a proton if sitesi, k, l, . . . ,m also
contain protons (i 6= k 6= l 6= . . . 6= m 6= j ). For
uncorrelated isotope exchange

pikl...mj = pipkpl . . . pmpj , (9)

and, for fully correlated exchange

pikl...mj = pi = pk = pl = . . . = pm = pj . (10)

The experimentally obtained 2D cross-relaxation
spectrum of an isotopically diluted system is the
ensemble average of 2D cross-relaxation spectra of
isotopomers of partially deuterated molecules,

AD(τm) = 〈A(τm)〉 =
〈
e−RkτmNa0

〉
=
〈
e−Rkτm

〉
Na0. (11)

Rk is the relaxation matrix that corresponds to an iso-
topomer with particular proton configuration, and<>
denotes the ensemble average. Equation 11 cannot be
written in the form of Equation 1, because the ensem-
ble averaging is taken over the spectra and not over the
relaxation matrices, hence

〈A(τm)〉 6= e−<Rk>τmNa0. (12)

Therefore, in partially deuterated systems, the values
of R0

ij cannot be determined by full matrix analy-
sis (Equation 3). However, Equation 11 can be ex-
panded into a Taylor series, and a formula similar to
Equation 7 can be obtained.

For anM-spin system, the number of different iso-
topomers is 2M (each spin site can contain a proton or
a deuteron). The isotopomers have the same geometry
but different number and distribution of protons. If the
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Figure 1. Relative errors in cross-relaxation rates for different degrees of protonation (5%, 10%, 25%, 50%, 75%, 90% and 95%) in cy-
clo-(L-Pro-Gly) dipeptide. Only a representative subset of 11 cross-relaxation rates that can be measured accurately (Zolnai et al., 1997) is
shown. The longest corresponding distance is 4.14 Å. The mixing times used for calculations are: 0.00006, 0.01, 0.02, 0.03, 0.04, 0.08, 0.16,
0.24, 0.32, and 0.48 s. (a) Normalized FMA, Equation 15. (b) Like (a), but with Equation 16. (c) Relative errors in cross-relaxation rates
determined by fitting Equation 17 as a function of the degree of protonation. For all degrees of fit, the normalized data obtained at the first six
mixing times were used, except for geminals, when only four mixing times were used. All errors are the average values of the 11 relative errors
and are plotted on a 10-base logarithmic scale.

Figure 2. The effect of isotope dilution on cross-relaxation buildup rate of the glutamine sidechain amide protons. The apparent initial buildup
rate of the normalized cross-peak volumes (Equation 4) decrease with the degree of deuteration (a). A normalization according to Equation 17
produces the same initial buildup rate in all cases (b). The smooth curves are second order polynomials fitted to experimental data.

sitesi andj are protonated, the cross-relaxation rates
Rkij corresponding to different isotopomers will be the
same irrespective of the protonation of the other sites.
If either site is deuterated,Rkij is equal to zero. Hence,
the terms in the series expansion of isotopomer’s vol-
ume matrix will be either the same as in Equation 7, or
zero. Therefore, the series expansion of Equation 11
can be obtained by introducing the probabilitiespi
into Equation 7. For example, fori 6= j the linear
term becomespijR0

ij , becauseR0
ij figures in the en-

semble average only when both of the sitesi and j
are protonated, and the probability of that event ispij .
Similarly, in the quadratic term, a productR0

ikR
0
kj is

nonzero only when sitesi, j , andk contain protons,

and that happens with probabilitypijk . Accordingly,
for an isotope-diluted sample, Equation 7 becomes
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where[ikj ] denotes the nonrepetitive indices in the set
generated byi, j , andk (e.g.,[123] = 123, [232] =
23, [111] = 1) and the probabilitiesp are defined as
in Equations 8–10. Again, in the final equation, we put
R0
ii = −Rexii − (ni − 1)Rauto

ii .
In general, Equation 13 is different from the expo-

nential form, which would allow the use of full matrix
analysis. However in certain cases it can be approx-
imated by an exponential expression. For example,
suppose that the isotope exchange is uncorrelated, and
for every i, pi = p. Then, if the mixing timeτm
converges toward zero, or ifp → 1, Equation 13
approaches

AD(τm) = pe−pRτmNa0. (14)

Hence, the dynamic matrix can be retrieved using an
appropriately modified FMA, namely,

R0 = − 1

pτm
N−1 ln

(
1

p
AD(τm)(Na0)

−1
)
. (15)

This expression is of limited value. For arbitraryp,
it is valid for short mixing times only (as a linear ap-
proximation); for longer mixing times it is valid only
for low degrees of dilution. However, this is the best
approximation, and here we use it just to demonstrate
the problems of FMA in isotope diluted-systems.

With the increase of isotope dilution (p→ 0), spin
diffusion is quenched and Equation 13 transforms into
the equation of the isolated spin pair, where

R0
ij =

ln
(

1− 2
p2

AD
ij (τm)

a0

)
−2τm

. (16)

The FMA-type formulas are of limited value be-
cause they cannot be used for practically important
isotope-dilution ranges. Here, we derive a formula
that can be applied for arbitrary isotope dilution. A
series expansion that is independent of both external
and autorelaxation rates up to the second order can be
obtained using Equation 13:

1

2

ADij (τm)

pij

(
pj

niADjj (τm)
+ pi

njADii (τm)

)
=

−τmR0
ij +

τ2
m

2

∑
k 6=i,j

nk
pikj

pij
R0
ikR

0
kj + . . . . (17)

Its main virtue is that it takes into account all the
relevant variables: the spin populations, the degree

of site protonation, and the correlation of isotope ex-
change among the sites. Equation 17 is an infinite
series; however, in practice, as for fully protonated
systems, it is used mostly up to the second order.

To assess the extent of errors in the determination
of cross-relaxation rates caused by different models,
we have applied the derived formulas (Equations 15,
16, and 17) to the cross-relaxation spectra generated
by the Monte Carlo simulation. We have chosen cyclo-
(L-Pro-Gly), a 10-spin system that at low temperatures
exhibits cross-relaxation properties like a small pro-
tein (Juraníc et al., 1997). We first generated a set of
structures randomly deuterated with the desired prob-
abilities (desired degree of isotope exchange). All the
structures had the same geometry, and the only differ-
ence among them was in the distribution of remaining
protons. The number of samples for the Monte Carlo
simulation was determined so that on average we have
100 samples per isotopomer at the given degree of
protonation. For each isotopomer we generated a re-
laxation matrixRk assumingω0/2π = 500 MHz,
τc = 3.8 ns, andRex = 0. Taking the matrix expo-
nential of eachRk, we obtained the NOESY spectra
of individual isotopomers, whose ensemble average
yielded the resulting NOESY spectrum, according to
Equation 11. Figures 1a,b show the 10-base loga-
rithm of the relative errors in cross-relaxation rates
obtained by normalized FMA (Equations 15 and 16),
and Figure 1c shows the 10-base logarithm of the rel-
ative errors of linear, quadratic, and cubic fitting of
Equation 17. Shown are the averages of the relative
errors of 11 cross-relaxation rates from cyclo-(L-Pro-
Gly) that can be measured accurately (Zolnai et al.,
1997). The errors represent only the error of the model
used. As expected, the error of Equation 15 (Figure 1a)
decreases with increase of protonation and with the
decrease of the mixing time. In contrast, Equation 16
(Figure 1b) shows the minimal errors at low degrees
of protonation and again at shorter mixing times.

The most important property of the fitting of series
expansion, Equation 17, is that the errors are indepen-
dent of the degree of protonation. The errors rapidly
decrease with the increase of the polynomial degree
and, in principle, could be made arbitrarily small. In
practice, due to the random errors, a quadratic fitting,
for which the model error is around 10%, may be
sufficient. Besides exhibiting smaller errors than ei-
ther FMA formula, the most important advantage of
Equation 17 is that it can be used across the full range
of deuteration degree and with arbitrary isotope ex-
change correlations among different proton/deuteron



337

sites. This is particularly useful for an emerging class
of selective isotope labeling experiments, in which the
intermolecular contacts are deduced from the cross-
relaxation rates of remaining protons (Walters et al.,
1997). Because the labeling is not absolutely selec-
tive, during the calculation of cross-relaxation rates
the variable degree of isotope exchange must be taken
into account, and this is accomplished by Equation 17.

For an experimental demonstration of the effect of
random deuteration, we examined the cross-relaxation
between protons of the glutamine side chain amide
group. These protons are 1.75 Å apart in a rigid geom-
etry, they are spectroscopically well resolved, and they
readily exchange with water. Three 10 mM samples
with different degree of deuteration (100%, 66%, 33%
H2O/D2O) were prepared by dissolving a commer-
cial glutamine (Aldrich) in corresponding mixtures of
H2O/D2O, followed by 6 h of equilibration; then the
samples were mixed with DMSO-d6 in volume ra-
tion 1:3. For NMR measurements, the samples were
cooled at−40◦C, to bring the cross-relaxation into
spin-diffusion regime and to diminish the chemical
exchange. The degree of deuteration was determined
by comparison of amide proton resonances with the
Hα resonance, and was found to be the same as the
H2O/D2O ratio. To construct the build-up curves, the
2D NOESY spectra were recorded at mixing times of
0, 30, 60, 100 and 160 ms on a Bruker AMX-300
spectrometer.

Figure 2 shows the build-up curves obtained by fit-
ting the experimental data to Equations 14 and 17. As
predicted, the uncorrected cross-relaxation rates de-
pend on the degree of deuteration, Figure 2a, whereas
the build-up curves calculated by Equation 17 yield
the same cross-relaxation rate within the error limits
of the model, irrespective of the degree of deuteration.

In conclusion, we have shown that in random par-
tially deuterated systems the use of full matrix analysis

is inappropriate except for extreme proton or deuteron
concentrations. We have derived a series expansion for
cross-relaxation spectra of isotope-diluted molecules,
and we have shown that the polynomial (in practice
quadratic) buildup analysis is the method of choice
for calculating the cross-relaxation rates in deuterated
molecules. It should be obvious that the chemical ex-
change rates are unaffected by isotope dilution, except
for weaker sensitivity due to the reduced concentra-
tion of observed spins. This different sensitivity of
the chemical exchange and cross-relaxation to isotope
dilution could be used to separate the two processes
when both take place between the same sites.
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